報(bào)告題目: Complex analysis, pure braid groups and nonabelian orbifold theory
報(bào)告人:黃一知教授(羅格斯大學(xué))
時(shí)間:2025年4月28日 15:00-16:00
地點(diǎn):理學(xué)院1號(hào)樓1-301
摘要:The moonshine module vertex operator algebra is in fact the first example of orbifold conformal field theories. Its construction is given by a purely algebraic method since the corresponding group is finite abelian. But for nonabelian orbifold theories, it is necessary to use complex analysis since nonabelian groups in orbifold theories are related to the pure braid group representations given by multivalued analytic functions. In this talk, I will discuss some of the deep aspects involving complex analysis, pure braid groups, twisted intertwining operators and tensor products of twisted modules in a paper jointly with Jishen Du.
報(bào)告人簡(jiǎn)介:黃一知教授現(xiàn)為美國(guó)羅格斯(Rutgers)大學(xué)教授,主要研究興趣是頂點(diǎn)算子代數(shù)、量子場(chǎng)論的數(shù)學(xué)理論,,及其在代數(shù)、拓?fù)?、幾何,、凝聚態(tài)物理和弦論上的應(yīng)用。他的代表性研究工作包括建立公理化的頂點(diǎn)算子代數(shù)的定義,,頂點(diǎn)算子代數(shù)的張量范疇理論的研究,,頂點(diǎn)算子代數(shù)框架下一般形式的Verlinde猜想的證明,并以此為基礎(chǔ)證明了大量的重要定理等,。目前為止,,黃一知教授出版學(xué)術(shù)專著一部,發(fā)表研究論文70余篇,,多數(shù)發(fā)表在國(guó)際頂尖數(shù)學(xué)雜志上,,如Duke Math J, CMP, Trans AMS等,他引次數(shù)超過(guò)2400次,。黃一知教授還是國(guó)際知名數(shù)學(xué)雜志Communications in Contemporary Mathematics的主編以及New York Journal of Mathematics 等期刊的編委會(huì)成員,。
中國(guó)·浙江 湖州市二環(huán)東路759號(hào)(313000) 浙ICP備10025412號(hào) 浙公網(wǎng)安備 33050202000195號(hào) 版權(quán)所有:黨委宣傳部